六年級數學分數復習要點
分數是小學數學的一個重點,在臨近小升初考試時,六年級學生要如何復習好分數呢?學習啦小編在此整理了六年級分數復習要點,供大家參閱,希望大家在閱讀過程中有所收獲!
六年級分數乘法復習要點
(一)分數乘法意義:
1、分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。
“分數乘整數”指的是第二個因數必須是整數,不能是分數。
2、一個數乘分數的意義就是求一個數的幾分之幾是多少。
“一個數乘分數”指的是第二個因數必須是分數,不能是整數。(第一個因數是什么都可以)
(二)分數乘法計算法則:
1、分數乘整數的運算法則是:分子與整數相乘,分母不變。
(1)為了計算簡便能約分的可先約分再計算。(整數和分母約分)(2)約分是用整數和下面的分母約掉最大公因數。(整數千萬不能與分母相乘,計算結果必須是最簡分數)。
2、分數乘分數的運算法則是:用分子相乘的積做分子,分母相乘的積做分母。(分子乘分子,分母乘分母)
(1)如果分數乘法算式中含有帶分數,要先把帶分數化成假分數再計算。
(2)分數化簡的方法是:分子、分母同時除以它們的最大公因數。
(3)在乘的過程中約分,是把分子、分母中,兩個可以約分的數先劃去,再分別在它們的上、下方寫出約分后的數。(約分后分子和分母必須不再含有公因數,這樣計算后的結果才是最簡單分數)。
(4)分數的基本性質:分子、分母同時乘或者除以一個相同的數(0除外),分數的大小不變。
(三)積與因數的關系:
一個數(0除外)乘大于1的數,積大于這個數。a×b=c,當b >1時,c>a。
一個數(0除外)乘小于1的數,積小于這個數。a×b=c,當b <1時,c
一個數(0除外)乘等于1的數,積等于這個數。a×b=c,當b =1時,c=a 。
在進行因數與積的大小比較時,要注意因數為0時的特殊情況。
(四)分數乘法混合運算
1、分數乘法混合運算順序與整數相同,先乘、除后加、減,有括號的先算括號里面的,再算括號外面的。
2、整數乘法運算定律對分數乘法同樣適用;運算定律可以使一些計算簡便。
乘法交換律:a×b=b×a 乘法結合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b±c)=a×b±a×c
(五)倒數的意義:乘積為1的兩個數互為倒數。
1、倒數是兩個數的關系,它們互相依存,不能單獨存在。單獨一個數不能稱為倒數。(必須說清誰是誰的倒數)
2、判斷兩個數是否互為倒數的唯一標準是:兩數相乘的積是否為“1”。例如:a×b=1則a、b互為倒數。
3、求倒數的方法:
?、偾蠓謹档牡箶担航粨Q分子、分母的位置。
②求整數的倒數:整數分之1。
③求帶分數的倒數:先化成假分數,再求倒數。
?、芮笮档牡箶担合然煞謹翟偾蟮箶?。
4、1的倒數是它本身,因為1×1=1
0沒有倒數,因為任何數乘0積都是0,且0不能作分母。
5、真分數的倒數是假分數,真分數的倒數大于1,也大于它本身。
假分數的倒數小于或等于1。帶分數的倒數小于1。
(六)分數乘法應用題——用分數乘法解決問題
1、求一個數的幾分之幾是多少?(用乘法)
已知單位“1”的量,求單位“1”的量的幾分之幾是多少,用單位“1”的量與分數相乘。
2、巧找單位“1”的量:在含有分數(分率)的語句中,分率前面的量就是單位“1”對應的量,或者“占”“是”“比”字后面的量是單位“1”。
3、什么是速度?
速度是單位時間內行駛的路程。
速度=路程÷時間 時間=路程÷速度 路程=速度×時間
單位時間指的是1小時1分鐘1秒等這樣的大小為1的時間單位,每分鐘、每小時、每秒鐘等。
4、求甲比乙多(少)幾分之幾?
多:(甲-乙)÷乙 少:(乙-甲)÷乙
六年級分數除法復習要點
一、分數除法的意義:分數除法是分數乘法的逆運算,已知兩個數的積與其中一個因數,求另一個因數的運算。
二、分數除法計算法則:除以一個數(0除外),等于乘上這個數的倒數。
1、被除數÷除數=被除數×除數的倒數。
2、除法轉化成乘法時,被除數一定不能變,“÷”變成“×”,除數變成它的倒數。
3、分數除法算式中出現小數、帶分數時要先化成分數、假分數再計算。
4、被除數與商的變化規(guī)律:
?、俪源笥?的數,商小于被除數:a÷b=c 當b>1時,c
?、诔孕∮?的數,商大于被除數:a÷b=c 當b<1時,c>a (a≠0 b≠0)
?、鄢缘扔?的數,商等于被除數:a÷b=c 當b=1時,c=a
三、分數除法混合運算
1、混合運算用梯等式計算,等號寫在第一個數字的左下角。
2、運算順序:
?、龠B除:同級運算,按照從左往右的順序進行計算;或者先把所有除法轉化成乘法再計算;或者依據“除以幾個數,等于乘上這幾個數的積”的簡便方法計算。加、減法為一級運算,乘、除法為二級運算。
②混合運算:沒有括號的先乘、除后加、減,有括號的先算括號里面,再算括號外面。
(a±b)÷c=a÷c±b÷c
六年級百分數復習要點
一、百分數的意義:表示一個數是另一個數的百分之幾的數叫做百分數。百分數又叫百分比或百分率,百分數不能帶單位。
注意:百分數是專門用來表示一種特殊的倍比關系的,表示兩個數的比。
1、百分數和分數的區(qū)別和聯(lián)系:
(1)聯(lián)系:都可以用來表示兩個量的倍比關系。
(2)區(qū)別:意義不同:百分數只表示倍比關系,不表示具體數量,所以不能帶單位。分數不僅表示倍比關系,還能帶單位表示具體數量。百分數的分子可以是小數,分數的分子只可以是整數。
注意:百分數在生活中應用廣泛,所涉及問題基本和分數問題相同,分母是100的分數并不是百分數,必須把分母寫成“%”才是百分數,所以“分母是100的分數就是百分數”這句話是錯誤的。“%”的兩個0要小寫,不要與百分數前面的數混淆。一般來講,出勤率、成活率、合格率、正確率能達到100%,出米率、出油率達不到100%,完成率、增長了百分之幾等可以超過100%。一般出粉率在70%、80%,出油率在30%、40%。
2、小數、分數、百分數之間的互化
(1)百分數化小數:小數點向左移動兩位,去掉“%”。
(2)小數化百分數:小數點向右移動兩位,添上“%”。
(3)百分數化分數:先把百分數寫成分母是100的分數,然后再化簡成最簡分數。
(4)分數化百分數:分子除以分母得到小數,(除不盡的保留三位小數)然后化成百分數。
(5)小數化分數:把小數成分母是10、100、1000等的分數再化簡。
(6)分數化小數:分子除以分母。
二、百分數應用題
1、求常見的百分率,如:達標率、及格率、成活率、發(fā)芽率、出勤率等求百分率就是求一個數是另一個數的百分之幾。
2、求一個數比另一個數多(或少)百分之幾,實際生活中,人們常用增加了百分之幾、減少了百分之幾、節(jié)約了百分之幾等來表示增加、或減少的幅度。
求甲比乙多百分之幾:(甲-乙)÷乙
求乙比甲少百分之幾:(甲-乙)÷甲
3、求一個數的百分之幾是多少。一個數(單位“1”)×百分率
4、已知一個數的百分之幾是多少,求這個數。
部分量÷百分率=一個數(單位“1”)
5、折扣、打折的意義:幾折就是十分之幾也就是百分之幾十
折扣、成數=幾分之幾、百分之幾、小數
八折=八成=十分之八=百分之八十=0.8
八五折=八成五=十分之八點五=百分之八十五=0.85
五折=五成=十分之五=百分之五十=0.5=半價
6、利率
(1)存入銀行的錢叫做本金。
(2)取款時銀行多支付的錢叫做利息。
(3)利息與本金的比值叫做利率。
利息=本金×利率×時間
稅后利息=利息-利息的應納稅額=利息-利息×5%
注:國債和教育儲蓄的利息不納稅
7、百分數應用題型分類
(1)求甲是乙的百分之幾——(甲÷乙)×100%=百分之幾
(2)求甲比乙多百分之幾——(甲-乙)÷乙×100%
(3)求甲比乙少百分之幾——(乙-甲)÷乙×100%
猜你感興趣: