sese在线视频|婷婷五月天 国产|丝袜在线一区第一页|精品国产污污网址|午夜无套内射视频|91视频亚洲第一|一区二区三区污污|毛片毛片毛片按摩按摩,摸毛片裸体|亚洲熟女av电影|在线观看欧美亚州

學習啦>學習方法>高中學習方法>高二學習方法>高二數(shù)學>

高中高二數(shù)學知識點

時間: 贊銳0 分享

在掌握的基礎上,做專項訓練,按層次補缺和提高。我們可以自己建立一本錯題集,將在練習中做錯的題目和尚未弄懂的題目及時記錄下來,逐一解決,形成鞏固。以下是小編給大家整理的高中高二數(shù)學知識點,希望能助你一臂之力!

高中高二數(shù)學知識點1

1.求函數(shù)的單調性:

利用導數(shù)求函數(shù)單調性的基本方法:設函數(shù)yf(x)在區(qū)間(a,b)內可導,(1)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);(2)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);(3)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù)。

利用導數(shù)求函數(shù)單調性的基本步驟:①求函數(shù)yf(x)的定義域;②求導數(shù)f(x);③解不等式f(x)0,解集在定義域內的不間斷區(qū)間為增區(qū)間;④解不等式f(x)0,解集在定義域內的不間斷區(qū)間為減區(qū)間。

反過來,也可以利用導數(shù)由函數(shù)的單調性解決相關問題(如確定參數(shù)的取值范圍):設函數(shù)yf(x)在區(qū)間(a,b)內可導,

(1)如果函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),則f(x)0(其中使f(x)0的x值不構成區(qū)間);

(2)如果函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),則f(x)0(其中使f(x)0的x值不構成區(qū)間);

(3)如果函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),則f(x)0恒成立。

2.求函數(shù)的極值:

設函數(shù)yf(x)在x0及其附近有定義,如果對x0附近的所有的點都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數(shù)f(x)的極小值(或極大值)。

可導函數(shù)的極值,可通過研究函數(shù)的單調性求得,基本步驟是:

(1)確定函數(shù)f(x)的定義域;(2)求導數(shù)f(x);(3)求方程f(x)0的全部實根,x1x2xn,順次將定義域分成若干個小區(qū)間,并列表:x變化時,f(x)和f(x)值的變化情況:

(4)檢查f(x)的符號并由表格判斷極值。

3.求函數(shù)的值與最小值:

如果函數(shù)f(x)在定義域I內存在x0,使得對任意的xI,總有f(x)f(x0),則稱f(x0)為函數(shù)在定義域上的值。函數(shù)在定義域內的極值不一定,但在定義域內的最值是的。

求函數(shù)f(x)在區(qū)間[a,b]上的值和最小值的步驟:(1)求f(x)在區(qū)間(a,b)上的極值;

(2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區(qū)間[a,b]上的值與最小值。

4.解決不等式的有關問題:

(1)不等式恒成立問題(絕對不等式問題)可考慮值域。

f(x)(xA)的值域是[a,b]時,

不等式f(x)0恒成立的充要條件是f(x)max0,即b0;

不等式f(x)0恒成立的充要條件是f(x)min0,即a0。

f(x)(xA)的值域是(a,b)時,

不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0。

(2)證明不等式f(x)0可轉化為證明f(x)max0,或利用函數(shù)f(x)的單調性,轉化為證明f(x)f(x0)0。

5.導數(shù)在實際生活中的應用:

實際生活求解(小)值問題,通常都可轉化為函數(shù)的最值.在利用導數(shù)來求函數(shù)最值時,一定要注意,極值點的單峰函數(shù),極值點就是最值點,在解題時要加以說明。

高中高二數(shù)學知識點2

1.定義法:

判斷B是A的條件,實際上就是判斷B=>A或者A=>B是否成立,只要把題目中所給的條件按邏輯關系畫出箭頭示意圖,再利用定義判斷即可。

2.轉換法:

當所給命題的充要條件不易判斷時,可對命題進行等價裝換,例如改用其逆否命題進行判斷。

3.集合法

在命題的條件和結論間的關系判斷有困難時,可從集合的角度考慮,記條件p、q對應的集合分別為A、B,則:

若A?B,則p是q的充分條件。

若A?B,則p是q的必要條件。

若A=B,則p是q的充要條件。

若A?B,且B?A,則p是q的既不充分也不必要條件。

高中高二數(shù)學知識點3

極值的定義:

(1)極大值:一般地,設函數(shù)f(x)在點x0附近有定義,如果對x0附近的所有的點,都有f(x)

(2)極小值:一般地,設函數(shù)f(x)在x0附近有定義,如果對x0附近的所有的點,都有f(x)>f(x0),就說f(x0)是函數(shù)f(x)的一個極小值,記作y極小值=f(x0),x0是極小值點。

極值的性質:

(1)極值是一個局部概念,由定義知道,極值只是某個點的函數(shù)值與它附近點的函數(shù)值比較是或最小,并不意味著它在函數(shù)的整個的定義域內或最小;

(2)函數(shù)的極值不是的,即一個函數(shù)在某區(qū)間上或定義域內極大值或極小值可以不止一個;

(3)極大值與極小值之間無確定的大小關系,即一個函數(shù)的極大值未必大于極小值;

(4)函數(shù)的極值點一定出現(xiàn)在區(qū)間的內部,區(qū)間的端點不能成為極值點,而使函數(shù)取得值、最小值的點可能在區(qū)間的內部,也可能在區(qū)間的端點。

求函數(shù)f(x)的極值的步驟:

(1)確定函數(shù)的定義區(qū)間,求導數(shù)f′(x);

(2)求方程f′(x)=0的根;

(3)用函數(shù)的導數(shù)為0的點,順次將函數(shù)的定義區(qū)間分成若干小開區(qū)間,并列成表格,檢查f′(x)在方程根左右的值的符號,如果左正右負,那么f(x)在這個根處取得極大值;如果左負右正,那么f(x)在這個根處取得極小值;如果左右不改變符號即都為正或都為負,則f(x)在這個根處無極值。

高中高二數(shù)學知識點相關文章

高二數(shù)學知識點總結

高二數(shù)學整體知識總結

高二數(shù)學知識點2020總結

職業(yè)高中高二數(shù)學知識點

高二數(shù)學知識點及公式2020

高二數(shù)學知識點歸納

高二數(shù)學知識點復習總結

高二數(shù)學知識點總結(人教版)

高二數(shù)學知識點小結

高中高二數(shù)學知識點

在掌握的基礎上,做專項訓練,按層次補缺和提高。我們可以自己建立一本錯題集,將在練習中做錯的題目和尚未弄懂的題目及時記錄下來,逐一解決,形成鞏固。以下是小編給大家整理的高中高二數(shù)學知識點,希望能助你一臂
推薦度:
點擊下載文檔文檔為doc格式
1069683