sese在线视频|婷婷五月天 国产|丝袜在线一区第一页|精品国产污污网址|午夜无套内射视频|91视频亚洲第一|一区二区三区污污|毛片毛片毛片按摩按摩,摸毛片裸体|亚洲熟女av电影|在线观看欧美亚州

學習啦 > 學習方法 > 高中學習方法 > 高三學習方法 > 高三數學 >

數列解題思路與技巧

時間: 巧綿20 分享

數學高考中,數列知識點的考查已經成為高考出題人比較看重的一項考點,甚至有一部分拔高題也都和數列有著直接的關系。下面就是小編給大家?guī)淼母咧袛祵W數列試題教學中的解題思路與技巧,希望大家喜歡!

高中數學數列試題教學中的解題思路與技巧

1.對數列概念的考查

在高中數列試題中,有一些試題可以直接通過帶入已學的通項公式或求和公式,就可以得到答案,面對這一種類型的試題,沒有什么技巧而言,我們只需熟練掌握相關的數列公式即可。

例如:在各項都為正數的等比數列中,首項b1=3,b1+b2+b3=21,那么b3+b4+b5等于多少?

解析:(1)本道試題主要是對正項數列的概念以及等比數列的通項公式和求和公式知識點的考查,考查學生對數列基礎知識和基本運算的掌握能力。

(2)本試題要求學生要熟練掌握老師在課堂上所教的通項公式和求和公式。

(3)首先讓我們來求公比,很明顯q不等1,那么我們可以根據我們所學過的等比數列前項和公式,列出關于公比的方程,即3(1-q3)/(1-q)=21。

對于這個方程,我們首先要選擇其運算的方式,要求學生平時的練習過程中,要讓學生能夠熟練地將高次方程轉化為低次方程進行運算。

2.對數列性質的考察

有些數列的試題中,經常會變換一些說法來考查學生對數列的基本性質的理解和掌握能力。

例如:己知等差數列{xn},其中xl+x7=27,求x2+x3+x5+x6等于多少?

解析:我們在課堂上學習過這樣的公式:等差數列和等比數列中m+n=p+q,我們可以充分利用這一特性來解此題,即:

xl+x7= x2+x6= x3+x5=27,

因此,x2+x3+x5+x6=(x2+x6)+(x3+x5)=27+27=54

這種類型的數列試題要求教師在課堂教學中,對數列的性質竟詳細講解,仔細推導。使得學生能夠真正的理解數列性質的來源。

3.對求通項公式的考察

①利用等差、等比數列的通項公式,求通項公式

②利用關系an={S1,n=1;Sn-Sn-1,n≥2}求通項公式

③利用疊加、疊乘法求通項公式

④利用數學歸納法求通項公式

⑤利用構造法求通項公式.

4.求前n項和的一些方法

在最近幾年的數學高考試題中,數列通項公式和數列求和這兩個知識點是每年必考的,因此,在高中數學數列的課堂教學中,教師要對數列求和通項公式這方面的知識點進行細致重點的講解。數列求和的主要解題方法有錯位相減法、分組求和法與合并求和法,下面對三種數列求和的解題方法進行詳細說明。

(1)錯位相減法

錯位相減法主要應用于等比數列的求和中,在最近幾年的高考試題當中,以此方法來求解數列求和的試題經常會有所體現(xiàn)。這一類型的試題解題方法主要是運用于諸如{等差數列·等比數列}數列前n項和的求和中。

例如:已知{xn}是等差數列,其前n項和是Sn,{yn}是等比數列,且x1=y1=2, x4+y4=27, S4-y4=10,求(1)求數列{xn}與{yn}的通項公式;(2)Tn= xny1+xn-1y2+…+x1yn,n∈N證明Tn+12=-2xn+10yn,n∈N

解析:(1)xn=3n-1,yn=2n;

(2)Tn= 2xn+22xn-1+23xn-2+…+2nx1,

2Tn= 22xn+23xn-1+…+2nx2+2n+1x1

計算得,Tn=-2(3n-1)+3×22+3×23+…+3×2n+2n+1=12(1-2n+1)/(1-2+2n+2-6n+2)=10×2n-6n-10

-2an+10bn-12=-2(3n-1)+10×2n-12=10×2n-6n-10

所以,Tn+12=-2xn+10yn,n∈N

錯位相減法主要應用于形如an=bncn,即等差數列·等比數列,這樣的數列求和試題運算中,解此類題的技巧是:首先分別列出等差數列和等比數列的前n的和,即Sn,然后再分別將Sn的兩側同時乘以等比數列的公比q,得出qSn;最后錯一位,再將兩邊的式子進行相減就可以了。

(2)分組法求和

在高中數列的試題當中,往往會遇到一部分沒有規(guī)律的數列試題,它們初看上去既不屬于等差數列也不屬于等比數列,但是如果將此類型的數列進行拆分,就可以得到我們所了解的等差數列和等比數列,遇到此類型的數列試題,我們就可以通過分組法求和的方法進行解題,首先將數列進行拆分,通過得到的等差數列和等比數列進行運算,最后將其結合在一起得出試題的答案。

(3)合并法求和

在高考數列的試題中,往往會遇到一些非常特殊的題型,它們初看上去沒有規(guī)律可循,但是通過合并和拆分,就可以找出它們的特殊性質。這就要求我們教師平時要鍛煉學生對數列的合并能力,通過合并找出規(guī)律,最終成功地解決這類特殊數列的求和問題。

結束語

數列知識是各種數學知識的連接點,在數學考試中,往往是基于數列知識為基礎,對學生的綜合數學知識進行考查。在高中數列學習過程中,首先要做好數列基本概念和基本性質的掌握,否則任何解題技巧都無濟于事。

數列解題思路與技巧相關文章:

1.高中數學六種解題技巧與五種數學答題思路

2.高中數學50個解題小技巧

3.50個高考數學解題技巧

4.2017高考數學數列經典例題

5.高中數學解題方法與思路

6.2019高考數學大題的最佳解題技巧及解題思路,清華學長告訴你如何拿...

7.高中數學大題的解題技巧及解題思想

8.高中數學解題技巧最后沖刺得分題

9.學好數學的方法與技巧

10.高中數學??碱}型答題技巧與方法及順口溜

439273