sese在线视频|婷婷五月天 国产|丝袜在线一区第一页|精品国产污污网址|午夜无套内射视频|91视频亚洲第一|一区二区三区污污|毛片毛片毛片按摩按摩,摸毛片裸体|亚洲熟女av电影|在线观看欧美亚州

學習啦>學習方法>各學科學習方法>數學學習方法>

初一數學上冊知識點梳理

時間: 舒淇4599 分享

學數學就是在學一種思維體系,在日常教導孩子的過程中也要注重這一點。下面小編為大家?guī)沓跻粩祵W上冊知識點梳理,歡迎大家參考閱讀,希望大家喜歡!

初一數學上冊知識點梳理

一、目標與要求

1.了解正數與負數是從實際需要中產生的。

2.能正確判斷一個數是正數還是負數,明確0既不是正數也不是負數。

3.理解有理數除法的意義,熟練掌握有理數除法法則,會進行有理數的除法運算;

4.了解倒數概念,會求給定有理數的倒數;

5.通過將除法運算轉化為乘法運算,培養(yǎng)學生的轉化的思想;通過有理數的除法

二、重點

正、負數的概念;

正確理解數軸的概念和用數軸上的點表示有理數;

有理數的加法法則;

除法法則和除法運算。

三、難點

負數的概念、正確區(qū)分兩種不同意義的量;

數軸的概念和用數軸上的點表示有理數;

異號兩數相加的法則;

根據除法是乘法的逆運算,歸納出除法法則及商的符號的確定。

四、知識框架

五、知識點、概念總結

1.正數:比0大的數叫正數。

2.負數:比0小的數叫負數。

3.有理數:

(1)凡能寫成q/p(p,q為整數且p不等于0)形式的數,都是有理數。正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數。

注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;

(2)有理數的分類:

4.數軸:數軸是規(guī)定了原點、正方向、單位長度的一條直線。

5.相反數:

(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;

(2)相反數的和為0等價于a+b=0等價于a、b互為相反數。

6.絕對值:

(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;

注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

(2)絕對值可表示為:

絕對值的問題經常分類討論;

7.有理數比大?。?/p>

(1)正數的絕對值越大,這個數越大;

(2)正數永遠比0大,負數永遠比0小;

(3)正數大于一切負數;

(4)兩個負數比大小,絕對值大的反而小;

(5)數軸上的兩個數,右邊的數總比左邊的數大;

(6)大數-小數>0,小數-大數<0.

8.互為倒數:乘積為1的兩個數互為倒數;

注意:0沒有倒數;若a≠0,那么a的倒數是1/a;若ab=1等價于a、b互為倒數;若ab=-1等價于a、b互為負倒數。

9. 有理數加法法則:

(1)同號兩數相加,取相同的符號,并把絕對值相加;

(2)異號兩數相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;10.有理數加法的運算律:

(1)加法的交換律:a+b=b+a ;

(2)加法的結合律:(a+b)+c=a+(b+c)。

11.有理數減法法則:減去一個數,等于加上這個數的相反數;即a-b=a+(-b)。

12.有理數乘法法則:

(1)兩數相乘,同號為正,異號為負,并把絕對值相乘;

(2)任何數同零相乘都得零;

(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定。

13. 有理數乘法的運算律:

(1)乘法的交換律:ab=ba;

(2)乘法的結合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac 。

14.有理數除法法則:除以一個數等于乘以這個數的倒數;注意:零不能做除數,即a/0無意義。

15.有理數乘方的'法則:

(1)正數的任何次冪都是正數;

(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時:(-a)n=-an或(a-b)n=-(b-a)n ,當n為正偶數時:(-a)n =an 或(a-b)n=(b-a)n 。

16.乘方的定義:

(1)求相同因式積的運算,叫做乘方;

(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;

17.科學記數法:

把一個大于10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法。

18.近似數的精確位:一個近似數,四舍五入到那一位,就說這個近似數的精確到那一位。

19.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字。

20.混合運算法則:先乘方,后乘除,最后加減。

(參考教材:初中數學七年級人教版)

練習:

1.若密云水庫的水位比標準水位高出3cm記為+3cm,某月的水位記錄中顯示,1日水位為-5cm,2日水位為-1cm,3日水位為+4cm,則( )

A.1日與2日水位相差6cm B.1日與3日水位相差1cm C.2日與3日水位相差5cm D.均不正確

2.籃球的質量,超過標準質量的克數記為正數,不足標準質量的克數記為負數,檢查的結果如下表:

最接近標準質量的是_________號籃球;質量最大的籃球比質量最小的籃球重____________克.

3.判斷:1)最小的自然數是1;2)最小的整數是1;3)一個有理數的倒數等于它本身,則這個數是1。

(3)一個數與0相加,仍得這個數。

初一數學上冊知識點總結

正數和負數

⒈正數和負數的概念

負數:比0小的數正數:比0大的數0既不是正數,也不是負數

注意:①字母a可以表示任意數,當a表示正數時,-a是負數;當a表示負數時,-a是正數;當a表示0時,-a仍是0。(如果出判斷題為:帶正號的數是正數,帶負號的數是負數,這種說法是錯誤的,例如+a,-a就不能做出簡單判斷)

②正數有時也可以在前面加“+”,有時“+”省略不寫。所以省略“+”的正數的符號是正號。

2.具有相反意義的量

若正數表示某種意義的量,則負數可以表示具有與該正數相反意義的量,比如:

零上8℃表示為:+8℃;零下8℃表示為:-8℃

3.0表示的意義

⑴0表示“沒有”,如教室里有0個人,就是說教室里沒有人;

⑵0是正數和負數的分界線,0既不是正數,也不是負數。如:

(3)0表示一個確切的量。如:0℃以及有些題目中的基準,比如以海平面為基準,則0米就表示海平面。

有理數

1.有理數的概念

⑴正整數、0、負整數統稱為整數(0和正整數統稱為自然數)

⑵正分數和負分數統稱為分數

⑶正整數,0,負整數,正分數,負分數都可以寫成分數的形式,這樣的數稱為有理數。

理解:只有能化成分數的數才是有理數。①π是無限不循環(huán)小數,不能寫成分數形式,不是有理數。②有限小數和無限循環(huán)小數都可化成分數,都是有理數。3,整數也能化成分數,也是有理數

注意:引入負數以后,奇數和偶數的范圍也擴大了,像-2,-4,-6,-8?也是偶數,-1,-3,-5?也是奇數。

2.有理數的分類

⑴按有理數的意義分類⑵按正、負來分正整數

整數0正有理數正分數

有理數有理數0(0不能忽視)

負整數

分數負有理數負分數

總結:①正整數、0統稱為非負整數(也叫自然數)

②負整數、0統稱為非正整數

③正有理數、0統稱為非負有理數

④負有理數、0統稱為非正有理數

數軸

⒈數軸的概念

規(guī)定了原點,正方向,單位長度的直線叫做數軸。

注意:⑴數軸是一條向兩端無限延伸的直線;⑵原點、正方向、單位長度是數軸的三要素,三者缺一不

可;⑶同一數軸上的單位長度要統一;⑷數軸的三要素都是根據實際需要規(guī)定的。

2.數軸上的點與有理數的關系

⑴所有的有理數都可以用數軸上的點來表示,正有理數可用原點右邊的點表示,負有理數可用原點左邊的點表示,0用原點表示。

⑵所有的有理數都可以用數軸上的點表示出來,但數軸上的點不都表示有理數,也就是說,有理數與數軸上的點不是一一對應關系。(如,數軸上的點π不是有理數)

3.利用數軸表示兩數大小

⑴在數軸上數的大小比較,右邊的數總比左邊的數大;

⑵正數都大于0,負數都小于0,正數大于負數;

⑶兩個負數比較,距離原點遠的數比距離原點近的數小。

4.數軸上特殊的(小)數

⑴最小的自然數是0,無的自然數;

⑵最小的正整數是1,無的正整數;

⑶的負整數是-1,無最小的負整數

5.a可以表示什么數

⑴a>0表示a是正數;反之,a是正數,則a>0;

⑵a<0表示a是負數;反之,a是負數,則a<0

⑶a=0表示a是0;反之,a是0,,則a=0

相反數

⒈相反數

只有符號不同的兩個數叫做互為相反數,其中一個是另一個的相反數,0的相反數是0。

注意:⑴相反數是成對出現的;⑵相反數只有符號不同,若一個為正,則另一個為負;

⑶0的相反數是它本身;相反數為本身的數是0。

2.相反數的性質與判定

⑴任何數都有相反數,且只有一個;

⑵0的相反數是0;

⑶互為相反數的兩數和為0,和為0的兩數互為相反數,即a,b互為相反數,則a+b=0

3.相反數的幾何意義

在數軸上與原點距離相等的兩點表示的兩個數,是互為相反數;互為相反數的兩個數,在數軸上的對應點(0除外)在原點兩旁,并且與原點的距離相等。0的相反數對應原點;原點表示0的相反數。說明:在數軸上,表示互為相反數的兩個點關于原點對稱。

4.相反數的求法

⑴求一個數的相反數,只要在它的前面添上負號“-”即可求得(如:5的相反數是-5);

⑵求多個數的和或差的相反數時,要用括號括起來再添“-”,然后化簡(如;5a+b的相反數是-(5a+b)?;喌?5a-b);

⑶求前面帶“-”的單個數,也應先用括號括起來再添“-”,然后化簡(如:-5的相反數是-(-5),化

簡得5)

5.相反數的表示方法

⑴一般地,數a的相反數是-a,其中a是任意有理數,可以是正數、負數或0。

當a>0時,-a<0(正數的相反數是負數)

當a<0時,-a>0(負數的相反數是正數)

當a=0時,-a=0,(0的相反數是0)

絕對值

⒈絕對值的幾何定義

一般地,數軸上表示數a的點與原點的距離叫做a的絕對值,記作|a|。

2.絕對值的代數定義

⑴一個正數的絕對值是它本身;⑵一個負數的絕對值是它的相反數;⑶0的絕對值是0.

可用字母表示為:

①如果a>0,那么|a|=a;②如果a<0,那么|a|=-a;③如果a=0,那么|a|=0。

可歸納為①:a≥0,<═>|a|=a(非負數的絕對值等于本身;絕對值等于本身的數是非負數。)②a≤0,<═>|a|=-a(非正數的絕對值等于其相反數;絕對值等于其相反數的數是非正數。)經典考題

如數軸所示,化簡下列各數

|a|,|b|,|c|,|a-b|,|a-c|,|b+c|

解:由題知道,因為a>0,b<0,c<0,a-b>0,a-c>0,b+c<0,

所以|a|=a,|b|=-b,|c|=-c,|a-b|=a-b,|a-c|=a-c,|b+c|=-(b+c)=-b-c

3.絕對值的性質

任何一個有理數的絕對值都是非負數,也就是說絕對值具有非負性。所以,a取任何有理數,都有|a|≥0。即⑴0的絕對值是0;絕對值是0的數是0.即:a=0<═>|a|=0;

⑵一個數的絕對值是非負數,絕對值最小的數是0.即:|a|≥0;

⑶任何數的絕對值都不小于原數。即:|a|≥a;

⑷絕對值是相同正數的數有兩個,它們互為相反數。即:若|x|=a(a>0),則x=±a;

⑸互為相反數的兩數的絕對值相等。即:|-a|=|a|或若a+b=0,則|a|=|b|;

⑹絕對值相等的兩數相等或互為相反數。即:|a|=|b|,則a=b或a=-b;

⑺若幾個數的絕對值的和等于0,則這幾個數就同時為0。即|a|+|b|=0,則a=0且b=0。

(非負數的常用性質:若幾個非負數的和為0,則有且只有這幾個非負數同時為0)

經典考題

已知|a+3|+|2b-2|+|c-1|=0,求a+b+c的值

解:因為|a+3|≥0,|2b-2|≥0,|c-1|≥0,且|a+3|+|2b-2|+|c-1|=0

所以|a+3|=0,|2b-2|=0,|c-1|=0

即a=-3,b=1,c=1

所以a+b+c=-3+1+1=-1

4.有理數大小的比較

⑴利用數軸比較兩個數的大?。簲递S上的兩個數相比較,左邊的總比右邊的小;

⑵利用絕對值比較兩個負數的大小:兩個負數比較大小,絕對值大的反而小;異號兩數比較大小,正數

大于負數。

5.絕對值的化簡

①當a≥0時,|a|=a;②當a≤0時,|a|=-a

6.已知一個數的絕對值,求這個數

一個數a的絕對值就是數軸上表示數a的點到原點的距離,一般地,絕對值為同一個正數的有理數有兩個,它們互為相反數,絕對值為0的數是0,沒有絕對值為負數的數。如:|a|=5,則a=土5

有理數的加減法

1.有理數的加法法則

⑴同號兩數相加,取相同的符號,并把絕對值相加;

⑵絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值;⑶互為相反數的兩數相加,和為零;

⑷一個數與零相加,仍得這個數。

2.有理數加法的運算律

⑴加法交換律:a+b=b+a

⑵加法結合律:(a+b)+c=a+(b+c)

在運用運算律時,一定要根據需要靈活運用,以達到化簡的目的,通常有下列規(guī)律:

①互為相反數的兩個數先相加——“相反數結合法”;

②符號相同的兩個數先相加——“同號結合法”;

③分母相同的數先相加——“同分母結合法”;

④幾個數相加得到整數,先相加——“湊整法”;

⑤整數與整數、小數與小數相加——“同形結合法”。

3.加法性質

一個數加正數后的和比原數大;加負數后的和比原數小;加0后的和等于原數。即:

⑴當b>0時,a+b>a⑵當b<0時,a+b<a⑶當b=0時,a+b=a< p="">

4.有理數減法法則

減去一個數,等于加上這個數的相反數。用字母表示為:a-b=a+(-b)。

5.有理數加減法統一成加法的意義

在有理數加減法混合運算中,根據有理數減法法則,可以將減法轉化成加法后,再按照加法法則進行計算。

在和式里,通常把各個加數的括號和它前面的加號省略不寫,寫成省略加號的和的形式。如:(-8)+(-7)+(-6)+(+5)=-8-7-6+5.

和式的讀法:①按這個式子表示的意義讀作“負8、負7、負6、正5的和”

②按運算意義讀作“負8減7減6加5”

6.有理數加減混合運算中運用結合律時的一些技巧:

Ⅰ.把符號相同的加數相結合(同號結合法)

(-33)-(-18)+(-15)-(+1)+(+23)

原式=-33+(+18)+(-15)+(-1)+(+23)(將減法轉換成加法)

=-33+18-15-1+23(省略加號和括號)

=(-33-15-1)+(18+23)(把符號相同的加數相結合)

=-49+41(運用加法法則一進行運算)

=-8(運用加法法則二進行運算)

Ⅱ.把和為整數的加數相結合(湊整法)

(+6.6)+(-5.2)-(-3.8)+(-2.6)-(+4.8)

原式=(+6.6)+(-5.2)+(+3.8)+(-2.6)+(-4.8)(將減法轉換成加法)

=6.6-5.2+3.8-2.6-4.8(省略加號和括號)

=(6.6-2.6)+(-5.2-4.8)+3.8(把和為整數的加數相結合)

=4-10+3.8(運用加法法則進行運算)

=7.8-10(把符號相同的加數相結合,并進行運算)=-2.2(得出結論)

Ⅲ.把分母相同或便于通分的加數相結合(同分母結合法)313217-+-+-524528

321137原式=(--)+(-+)+(+-)552248

1=-1+0-8

1=-18-

Ⅳ.既有小數又有分數的運算要統一后再結合(先統一后結合)312)+(-3)-(-10)-(+1.25)483

13121原式=(+)+(+3)+(-3)+(+10)+(-1)84834

13121=+3-3+10-184834

31112=(3-1)+(-3)+1044883

12=2-3+1023

1=-3+136

1=106(+0.125)-(-3

Ⅴ.把帶分數拆分后再結合(先拆分后結合)-31617+10-12+45112215

初一數學上冊知識點歸納

第一章有理數

1.1正數與負數

①正數:大于0的數叫正數。(根據需要,有時在正數前面也加上“+”)

②負數:在以前學過的0以外的數前面加上負號“—”的數叫負數。與正數具有相反意義。

③0既不是正數也不是負數。0是正數和負數的分界,是的中性數。

注意:搞清相反意義的量:南北;東西;上下;左右;上升下降;高低;增長減少等

1.2有理數

1、有理數(1)整數:正整數、0、負整數統稱整數;(2)分數;正分數和負分數統稱分數;

(3)有理數:整數和分數統稱有理數。

2、數軸(1)定義:通常用一條直線上的點表示數,這條直線叫數軸;

(2)數軸三要素:原點、正方向、單位長度;

(3)原點:在直線上任取一個點表示數0,這個點叫做原點;

(4)數軸上的點和有理數的關系:所有的有理數都可以用數軸上的點表示出來,但數軸上

的點,不都是表示有理數。

3、相反數:只有符號不同的兩個數叫做互為相反數。(例:2的相反數是-2;0的相反數是0)

4、絕對值:(1)數軸上表示數a的點與原點的距離叫做數a的絕對值,記作|a|。從幾何意義上講,

數的絕對值是兩點間的距離。

(2)一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。

兩個負數,絕對值大的反而小。

1.3有理數的加減法

①有理數加法法則:

1、同號兩數相加,取相同的符號,并把絕對值相加。

2、絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值?;橄喾磾档膬蓚€數相加得0。

3、一個數同0相加,仍得這個數。

加法的交換律和結合律

②有理數減法法則:減去一個數,等于加這個數的相反數。

1.4有理數的乘除法

①有理數乘法法則:兩數相乘,同號得正,異號得負,并把絕對值相乘;

任何數同0相乘,都得0;

乘積是1的兩個數互為倒數。

乘法交換律/結合律/分配律

②有理數除法法則:除以一個不等于0的數,等于乘這個數的倒數;

兩數相除,同號得正,異號得負,并把絕對值相除;

0除以任何一個不等于0的數,都得0。

1.5有理數的乘方

1、求n個相同因數的積的運算,叫乘方,乘方的結果叫冪。在a的n次方中,a叫做底數,n叫做

指數。負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0。

2、有理數的混合運算法則:先乘方,再乘除,最后加減;同級運算,從左到右進行;如有括號,先做括號內的運算,按小括號、中括號、大括號依次進行。

3、把一個大于10的數表示成a×10的n次方的形式,使用的就是科學計數法,注意a的范圍為1≤a<10。

4、從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字。四舍五入遵從精確到哪一位就從這一位的下一位開始,而不是從數字的末尾往前四舍五入。比如:3.5449精確到0.01就是3.54而不是3.55.

第二章整式的加減

2.1整式

1、單項式:由數字和字母乘積組成的式子。系數,單項式的次數.單項式指的是數或字母的積的代數式.單獨一個數或一個字母也是單項式.因此,判斷代數式是否是單項式,關鍵要看代數式中數與字母是否是乘積關系,即分母中不含有字母,若式子中含有加、減運算關系,其也不是單項式.

2、單項式的系數:是指單項式中的數字因數;

3、單項數的次數:是指單項式中所有字母的指數的和.

4、多項式:幾個單項式的和。判斷代數式是否是多項式,關鍵要看代數式中的每一項是否是單項式.每個單項式稱項,常數項,多項式的次數就是多項式中次數的次數。多項式的次數是指多項式里次數項的次數,這里ab是次數項,其次數是6;多項式的項是指在多項式中,每一個單項式.特別注意多項式的項包括它前面的性質符號.

5、它們都是用字母表示數或列式表示數量關系。注意單項式和多項式的每一項都包括它前面的符號。

6、單項式和多項式統稱為整式。33

2.2整式的加減

1、同類項:所含字母相同,并且相同字母的指數也相同的項。與字母前面的系數(≠0)無關。

2、同類項必須同時滿足兩個條件:(1)所含字母相同;(2)相同字母的次數相同,二者缺一不可.同類項與系數大小、字母的排列順序無關

3、合并同類項:把多項式中的同類項合并成一項。可以運用交換律,結合律和分配律。

4、合并同類項法則:合并同類項后,所得項的系數是合并前各同類項的系數的和,且字母部分不變;

5、去括號法則:去括號,看符號:是正號,不變號;是負號,全變號。

6、整式加減的一般步驟:

一去、二找、三合

(1)如果遇到括號按去括號法則先去括號.(2)結合同類項.(3)合并同類項

第三章一元一次方程

3.1一元一次方程

1、方程是含有未知數的等式。

2、方程都只含有一個未知數(元)x,未知數x的指數都是1(次),這樣的方程叫做一元一次方程。注意:判斷一個方程是否是一元一次方程要抓住三點:

1)未知數所在的式子是整式(方程是整式方程);

2)化簡后方程中只含有一個未知數;

3)經整理后方程中未知數的次數是1.

3、解方程就是求出使方程中等號左右兩邊相等的未知數的值,這個值就是方程的解。

4、等式的性質:1)等式兩邊同時加(或減)同一個數(或式子),結果仍相等;

2)等式兩邊同時乘同一個數,或除以同一個不為0的數,結果仍相等。

注意:運用性質時,一定要注意等號兩邊都要同時變;運用性質2時,一定要注意0這個數.

3.2、3.3解一元一次方程

在實際解方程的過程中,以下步驟不一定完全用上,有些步驟還需重復使用.因此在解方程時還要注意以下幾點:

①去分母:在方程兩邊都乘以各分母的最小公倍數,不要漏乘不含分母的項;分子是一個整體,去分母后應加上括號;去分母與分母化整是兩個概念,不能混淆;

②去括號:遵從先去小括號,再去中括號,最后去大括號;不要漏乘括號的項;不要弄錯符號;③移項:把含有未知數的項移到方程的一邊,其他項都移到方程的另一邊(移項要變符號)移項要變號;

④合并同類項:不要丟項,解方程是同解變形,每一步都是一個方程,不能像計算或化簡題那樣寫能連等的形式;

⑤系數化為1::字母及其指數不變系數化成1,在方程兩邊都除以未知數的系數a,得到方程的解。不要分子、分母搞顛倒。

3.4實際問題與一元一次方程

一.概念梳理

⑴列一元一次方程解決實際問題的一般步驟是:①審題,特別注意關鍵的字和詞的意義,弄清相關

數量關系;②設出未知數(注意單位);③根據相等關系列

出方程;④解這個方程;⑤檢驗并寫出答案(包括單位名稱)。

⑵一些固定模型中的等量關系及典型例題參照一元一次方程應用題專練學案。

二、思想方法(本單元常用到的數學思想方法小結)

⑴建模思想:通過對實際問題中的數量關系的分析,抽象成數學模型,建立一元一次方程的思想.⑵方程思想:用方程解決實際問題的思想就是方程思想.

⑶化歸思想:解一元一次方程的過程,實質上就是利用去分母、去括號、移項、合并同類項、未知

數的系數化為1等各種同解變形,不斷地用新的更簡單的方程來代替原來的方程,最

后逐步把方程轉化為x=a的形式.體現了化“未知”為“已知”的化歸思想.

⑷數形結合思想:在列方程解決問題時,借助于線段示意圖和圖表等來分析數量關系,使問題中的

數量關系很直觀地展示出來,體現了數形結合的優(yōu)越性.

⑸分類思想:在解含字母系數的方程和含絕對值符號的方程過程中往往需要分類討論,在解有關方

案設計的實際問題的過程中往往也要注意分類思想在過程中的運用.

三、數學思想方法的學習

1.解一元一次方程時,要明確每一步過程都作什么變形,應該注意什么問題.

2.尋找實際問題的數量關系時,要善于借助直觀分析法,如表格法,直線分析法和圖示分析法等.

3.列方程(\)解應用題的檢驗包括兩個方面:⑴檢驗求得的結果是不是方程的解;

⑵是要判斷方程的解是否符合題目中的實際意義.

四、一元一次方程典型例題

m3例1.已知方程2x-+3x=5是一元一次方程,則.

解:由一元一次方程的定義可知m-3=1,解得m=4.或m-3=0,解得m=3

所以m=4或m=3

警示:很多同學做到這種題型時就想到指數是1,從而寫成m=1,這里一定要注意x的指數是(m

-3).

2例2.已知x??2是方程ax-(2a-3)x+5=0的解,求a的值.

解:∵x=-2是方程ax-(2a-3)x+5=0的解

∴將x=-2代入方程,

2得a?(-2)-(2a-3)?(-2)+5=02

化簡,得4a+4a-6+5=0

∴a=18

點撥:要想解決這道題目,應該從方程的解的定義入手,方程的解就是使方程左右兩邊值相等的未知數的值,這樣把x=-2代入方程,然后再解關于a的一元一次方程就可以了.

例3.解方程2(x+1)-3(4x-3)=9(1-x).

解:去括號,得2x+2-12x+9=9-9x,

移項,得2+9-9=12x-2x-9x.

合并同類項,得2=x,即x=2.

點撥:此題的一般解法是去括號后將所有的未知項移到方程的左邊,已知項移到方程的右邊,其實,我們在去括號后發(fā)現所有的未知項移到方程的左邊合并同類項后系數不為正,為了減少計算的難度,我們可以根據等式的對稱性,把所有的未知項移到右邊去,已知項移到方程的左邊,最后再寫成x=a的形式.

例4.解方程

解析:方程兩邊乘以8,再移項合并同類項,得同樣,方程兩邊乘以6,再移項合并同類項,得

方程兩邊乘以4,再移項合并同類項,得x?1?12

方程兩邊乘以2,再移項合并同類項,得x=3.

說明:解方程時,遇到多重括號,一般的方法是從里往外或從外往里運用乘法的分配律逐層去特號,而本題最簡捷的方法卻不是這樣,是通過方程兩邊分別乘以一個數,達到去分母和去括號的目的。

例5.解方程

解析:方程可以化為

去括號移項合并同類項,得-7x=11,所以x=?11.7

說明:一見到此方程,許多同學立即想到老師介紹的方法,那就是把分母化成整數,即各分數分子分母都乘以10,再設法去分母,其實,仔細觀察這個方程,我們可以將分母化成整數與去分母兩步一步到位,第一個分數分子分母都乘以2,第二個分數分子分母都乘以5,第三個分數分子分母都乘以10.

例6.解方程

就能很快得到答案:x=3.

3,12=3×4,知識鏈接:此題如果直接去分母,或者通分,數字較大,運算煩瑣,發(fā)現分母6=2×

20=4×5,30=5×6,聯系到我們小學曾做過這樣的分式化簡題,故采用拆項法解之比較簡便.

例7.參加某保險公司的醫(yī)療保險,住院治療的病人可享受分段報銷,?保險公司制度的報銷細

則如下表,某人今年住院治療后得到保險公司報銷的金額是1260元,那么此人的實際醫(yī)療費是()

A.2600元解析:設此人的實際醫(yī)療費為x元,根據題意列方程,得

500×0+500×60%+(x-500-500)×80%=1260.

解之,得x=2200,即此人的實際醫(yī)療費是2200元.故選B.

點撥:解答本題首先要弄清題意,讀懂圖表,從中應理解醫(yī)療費是分段計算累加求和而得的.因

60%<1260<2000×80%,所以可知判斷此人的醫(yī)療費用應按第一檔至第三檔累加計算.為500×

例8.我市某縣城為鼓勵居民節(jié)約用水,對自來水用戶按分段計費方式收取水費:若每月用水不超過7立方米,則按每立方米1元收費;若每月用水超過7立方米,則超過部分按每立方米2元收費.如果某戶居民今年5月繳納了17元水費,那么這戶居民今年5月的用水量為__________立方米.

7<17,所以該戶居民今年5月的用水量超標.解析:由于1×

1+2(x-7)=17,解得x=12.設這戶居民5月的用水量為x立方米,可得方程:7×

所以,這戶居民5月的用水量為12立方米.

初一數學上冊知識點梳理相關文章

初一數學上冊知識點總結

七年級上冊數學知識點歸納

七年級數學上冊知識點匯總

最新七年級數學上冊知識點

初一數學上冊知識點大全

初一上冊數學重點知識點歸納總結

人教版七年級數學上冊知識點總結

七年級數學知識點歸納上冊2022

七年級數學上冊知識點大全

初一數學重要知識點歸納

1569551